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The growth of the unsteady boundary layer on an infinite rotating disk in a 
counter-rotating fluid is examined numerically and analytically. The numerical 
computations indicate that the boundary layer breaks down when fit* % 2.36 in 
a novel way: the displacement thickness, as well as all the velocity components, 
becomes infinite. This numerical solution is fitted to an asymptotic expansion 
which contains the singularities found in the numerical integrations, and it is 
concluded that the solution of the unsteady similarity equations does break 
down at a finite time as the numerical results indicate. This problem is placed 
in a physically more realistic context by considering numerically the unsteady 
boundary layer which develops on a finite rotating disk in a counter-rotating 
fluid. It is found that the breakdown of the solution occurs at the axis at the 
same time, and thus the concept of a thin boundary layer in this more realistic 
problem is also destroyed in a finite time. 

1. Introduction 
Although the study of motions of a viscous fluid in which are immersed two 

parallel disks rotating coaxially in opposite senses goes back to Schultz-Griinow 
(1 935), substantial difficulties and controversies remain at the present time. 
This situation is in marked contrast to that when the disks are rotating in the 
same sense or when one is at  rest, about which a great deal has been discovered 
as was shown by the recent paper of Nguyen, Ribault & Florent (1975) and 
references quoted therein. 

For two disks in counter-rotation at  high Reynolds number (based on the 
distance between the disks) two contradictory solutions have been proposed. One 
of them, due to Stewartson (1953), suggests that the fluid motion is largely 
confined to boundary layers of von KArmitn’s form (1921) near each disk with 
the main body of fluid between the disks only slightly disturbed. This hypothesis 
has been verified in the coarse experiments described by Stewartson (1953). 

t Permanent address : Department of Mathematics, University College London. 
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However, numerical studies (Lance & Rogers 1962; Pearson 1965) of the flow 
between two infinite disks rotating with angular velocities fi and SZl = afi (a < 0) 
bear out this conclusion only when a = - 1. If a + - 1 the flow properties are 
more complicated and a substantial core flow seems to persist a t  large values of 
R. Even a t  a = - I Pearson found in the numerical work an apparent temporal 
instability at variance with the experiments and concluded that no stable 
symmetrical solution can exist. Later Tam (1969) suggested that the substantial 
stable core flows found by Pearson are inviscid but Matkowsky & Siegmann 
(1975) have demonstrated that his matching arguments fail if carried far enough. 
Also, certain rigorous properties of the governing equations have been established 
by McLeod & Parter (1974) which are consistent with Stewart,son’s experi- 
ments. 

The other solution, possibly relevant when R 9 1, assumes that the flow field 
when a < 0 is basically similar to that when a > 0, i.e. consists of a core of fluid 
rotating with angular velocity Q and two boundary layers, one on each disk. 
This model, first suggested by Batchelor (1951), is intuitively attractive and, 
although it has not yet been observed, the properties of the resulting flow field 
are worth exploring. The model cannot be valid for all r < 0 since we know that 
the boundary-layer equations have no solution if Ql = - Q (McLeod 1970), and 
no numerical solutions of the equations have been found if 

- 6.211 < a < - 0.6879t (1.1) 

(Evans 1969; Bodonyi 1975). Also, McLeod & Parter (1974) suggest that for the 
case SZ, = - Q the behaviour of the governing equations as R -+ 00 is not consistent 
with the solution suggested by Batchelor; although in the absence of a uniqueness 
proof a solution of Batchelor’s type cannot be ruled out a priori. 

In  the present paper we attempt to advance our understanding of the flow 
field by discussing the transient problem, i.e. we examine the growt’h of the 
unsteady boundary layer from an initial, Rayleigh, form in one of the cases 
where no steady-state solution exists. We wish to examine whether the failure 
is due to an overly simple view of the steady-state solution or some other cause. 
The first possibility has already been met in related problems, namely the boun- 
dary layer induced by a potential vortex (Burggraf, Stewartson & Belcher 
1971) or a generalized vortex (Belcher, Burggraf & Stewartson 1972) above a 
fixed disk. In  these problems the non-existence of solutions of the steady-state 
similarity equations was resolved for a finite disk on the basis of a multi- 
structured boundary layer developing near the centre of the disk. It appears, 
however, that in the present instance the solution becomes singular at a finite 
value of Qt* in all components of the velocity. The phenomenon may be thought 
of as an explosion. 

We first study problem I, in which two parallel infinite disks are initially 
rotating with angular velocity SZ about a common axis, the appropriate Reynolds 

t Bodonyi (1975) gives an analytic argument which suggests that this number can be 
improved to -0.6968. Recent detailed numerical studies by Prof. P. J. Zandbergen and 
Dr D. Dijkstra show tha.t the solution is not unique below the point u = - 6.229 and that a 
second branch arises which ranges back to positive values of cr. 
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number R being very large. At time t* = 0 the angular velocity of one of these 
disks is suddenly reversed to become - Q. (The choice of an abrupt reversal is 
not crucial: so long as the reversal takes place within a few revolutions of the 
disk, the main conclusions would be unaltered.) Initially the fluid between the 
disks continues to rotate with angular velocity Q apart from an unsteady and 
growing boundary layer set up near the disturbed disk. The growth of this 
boundary layer is studied numerically and it is found that it breaks down when 
Qt* = t ,  + 2.36 in a novel way: all the velocity components become infinite. 
Such a statement of course involves an element of inference because no numerical 
procedure can exhibit infinities: we mean that the numerical solution can be 
fitted to an asymptotic expansion containing such singularities in a moderately 
satisfactory way. We deduce that, within half a revolution of the occurrence of 
the abrupt reversal, the concept of a rotating core of fluid with a thin unsteady 
boundary layer has been destroyed and we can expect that thereafter the core 
flow must be modified in a serious way. 

I n  light of previous studies (Burggraf et al. 1971) one possible explanation of 
this phenomenon is that, were the disks of finite radius, the unsteady similarity 
solution would hold only in the neighbourhood of the axis at best. Indeed the 
boundary layer moving inwards from the edge of the disk might take on a multi- 
structured form near the axis in which the radial velocity has a non-zero value 
at the axis, so that the unsteady similarity solution would be irrelevant. We 
investigate this possibility by studying problem 11, in which three finite parallel 
disks are rotating coaxially with angular velocity Q, the Reynolds number being 
large. The outer two disks each have radius b sufficiently large that the core 
of uniformly rotating fluid between them envelopes the central disk of radius 
a ( a  < b ) .  At time t* = 0 the angular velocity of this central disk changes sign. 
Initially two Rayleigh-type boundary layers are set up on either side of the 
central disk. In  them the radial velocity is negative and so the finite nature of 
the disk must affect the further development of the outer part of these boundary 
layers. The inner boundary of the affected part is at the edge when t* = 0 and 
moves inboard a t  an exponentially decreasing rate, formally reaching the axis 
when Qt* = 00. It might be expected, therefore, that the unsteady similarity 
solution is valid near the axis so long as it exists and that the breakdown of the 
solution of the more general problem occurs at the axis at the same time t,. 
The numerical study verifies this inference and thus the concept of a thin 
boundary layer in this more realistic problem is also destroyed in a finite 
time. 

It is of interest to examine the behaviour of the unsteady boundary layer 
when v =t= - 1. Further work needs to be done but there are some unpublished 
studies by Bodonyi (1973). These concern problem I with v = - 0.10, - 0.25 
and - 0.50 and show that even when the steady-state solution exists it is not 
approached by the unsteady calculations as Qt*+co. Instead, for CT = -0.10 
the solution takes on the characteristics of a limit cycle, with, for example, the 
skin-friction vector describing a closed curve, points of which can be at a sub- 
stantial distance from the corresponding steady-state value. For v = - 0.25 and 
- 0.50 no limit-cycle solution was found. Instead the numerical computations 
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failed to converge in a finite time, following a behaviour very similar to that for 
IT = - 1. It may be that we can define three numbers gl, g2 and v3 such that 

0 2 cT1 2 g2 > cr3 (1.2) 

with the properties that if 0 2 g > r1 the steady state is the limit of the unsteady 
solution as Qt* -+ co, if g1 > g > g2 the unsteady solution does not have a limit 
and grows indefinitely in width as Qt* increases, and if (r2 > CT > g3 the unsteady 
solution breaks down at a finite time. These numbers do not necessarily coincide 
with those in (1 .1)  and indeed we cannot yet exclude the possibilities that 
crl = 0 and cr3 = co. The statements above may also provide the key to under- 
standing why Stewartson (1953) was unable to obtain a core flow in his experi- 
ments with g < 0. 

These studies are also relevant in a quite different context. For a number of 
years there has been an increasing interest in unsteady separation, particularly 
with the possibility that a breakdown can occur at a finite time. An excellent 
review of the developments in the subject has recently been given by Sears & 
Telionis (1975). Examples are given in which singularities do occur but these are 
constructed by applying a similarity transformation reducing the number of 
independent variables from three to two so that the singularity must exist for 
all time. Williams & Johnson (1974) demonstrate a very good example of this 
type. In  other studies a singularity has been claimed to begin at  some finite 
time but since the unsteady solution is approaching a steady-state solution 
which is known to contain a singularity, such a claim must be treated with some 
caution until a systematic analytic procedure is available for describing the 
singularity. Sears & Telionis are optimistic that such a theory is close at hand. 
The only cases known to the authors in which the unsteady boundary layer 
exhibits grossly anomalous behaviour after a finite time, predicted numerically 
and verified analytically, are equivalent to the rear-stagnation study of Proud- 
man & Johnson (1962). Here the boundary-layer thickness increased exponenti- 
ally with time. 

We claim, therefore, that the present problem is especially interesting as the 
first known example in which an unsteady boundary layer, initially well behaved, 
breaks down after a finite interval of time in a manner described in a mutually 
consistent way using numerical and analytic methods. Further, the breakdown 
takes on a quite different form from the steady breakdown at IT = -0.6968 
discussed by Bodonyi (1975) and from those discussed by Sears & Telionis 
(1975), being manifested by an infinite displacement thickness and infinite 
velocity components in all directions. 

2. Problem I: the infinite disk 
Consider an incompressible fluid with kinematic viscosity v confined between 

the two parallel planes x* = 0 and z* = d. At first the fluid and the disks are 
assumed to be rotating rigidly with angular velocity Q, then at time t* = 0, 
the angular velocity of the plane z* = 0 is instantaneously reversed. It is then 
reasonable to assume that if R B 1, where R = Rd2/v is the Reynolds number of 
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the flow, the principal disturbance to the fluid is confined within a thin boundary 
layer near the plane z* = 0 for a finite range of values of $2.. Relative to 
cylindrical polar co-ordinates (r*, 8,  z*)  having as axis the common axis of 
rotation of the disks, the velocity components of the fluid can be written as 

( f ir* aF/az, Rr*G, - 2(vR)3  F ) ,  (2 .1 )  

where z = z*(R/v)+, t = at*, and F and G are functions of z and t only. Further, 
since R % 1 the governing equations may be reduced to boundary-layer form, i.e. 

& = F , , + 2 F ~ z - F ~ + G 2 - l ,  (2 .2a )  

G, = G,, + 2FG, - ZG4,  (2 .2b )  

where a suffix denotes a derivative. The equation of continuity is identically 
satisfied in virtue of (2.1). The appropriate boundary conditions are 

F = F, = 0,  G = 1 at t = 0 for all z ,  ( 2 . 3 ~ )  

G+l ,  F,+O as z- fco  for all t ,  ( 2 .3b )  

G = - l ,  F = F , = O  at z = O  f o r a l l  t > 0 .  ( 2 . 3 ~ )  

These equations were integrated numerically using a time-implicit finite- 
difference scheme wherein all derivatives are replaced by their corresponding 
centred-difference expressions. If qi denotes a velocity component a t  the point 
zj a t  the current time t and ai its known value at the previous time f = t -A t ,  
the difference equations are written for the intermediate time t* = *(%+t )  in 
the manner of Crank & Nicholson (1947) with q: = &. + qi). The finite-difference 
analogues of (2 .2)  are expressed in matrix notation as 

MF,= R, MG = S ,  (2 .4)  

where M is a tridiagonal square matrix, F, and G are coIumn vectors representing 
the velocity components, and R and S column vectors whose elements contain 
both known and unknown functions of the flow properties. For a given time 
(2 .4)  were solved using Gaussian elimination for the simultaneous solution at all 
points within the domain with F being found during each cycle by integrating 
3’’. Since ( 2 . 2 )  are nonlinear i t  was necessary to use an iterative procedure, 
repeatedly solving (2 .4)  until the desired degree of convergence was obtained 
(say 1q’-p[ < 10-5). Once convergence had been obtained at time t ,  the solution 
was advanced to the new time t + At and the process repeated until the com- 
putations failed to converge. 

The integration proceeded smoothly for 0 ,< t < 2.0 while for t > 2 the solution 
began to develop explosively with the boundary-layer thickness increasing to 
large values. The integration was terminated at  t = 2.25, when F(o0, t )  B - 221 
and the boundary-layer thickness had reached x 60. We note that the boundary 
conditions (2 .3b )  a t  z = 00 were replaced by the same conditions at z = 60. 
Further, the step lengths in t chosen were At = 0.01 and 0.005 but the solution 
appeared to be insensitive to the change. On the other hand the step lengths 
Az chosen for z had the values 0.30 and 0.15 and significant changes did appear 
as AZ varied. In  presenting the final results h2-extrapolation was used to estimate 
the solution in the double limit Az, At -+ 0. 

43 FL* 79 
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FIGURE 1. Variation of normal velocity W,(t) = -2Fa(t) 
at edge of boundary layer with t .  

In  figure 1 we present the variation of [ - 2F(m,  t)]-* with t for t 2 2 and in 
table 1 the variation of some of the characteristic properties of the solution 
near the final breakdown. In  figure 2 we present curves of G and Fz for 
t 2 1.0. 

A clue to the nature of the breakdown indicated by the numerical solution 
is provided by table 1 and figure 1, which suggest that ( - Z F ( C O , ~ ) ) - ~  varies 

F(co, t )  z - n/a(tE - t ) 2 ,  CL a constant. (2.5) - 1 .  ~ . .  . -_ .  ... . . .  .. 1 . 1  

By making use oi this conjecture we shall inltiate an asymptotic theory WnlCh 

describes the nature of the breakdown and provides additional authority for 
the numerical study. Since G,(O,t) and cz(O,t) appear to remain finite while 
- F(W,  t )  + co as t --f tE, we infer that, over the majority of the flow field, viscous 
Grces are negligible in comparison with the inertial forces. On further taking 
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t -F(co,~) {-~F(co,~))-* --I”, ,(O,t)  GZ(0,t) 
0 0 00 0 00 

0.50 0.3152 1.2594 0.4450 1.527 
1.00 1.138 0.6630 0.6373 0.9065 
1.50 3.584 0.3735 0.7858 0.4381 
2.00 21.77 0.1515 0.7883 -0.1509 
2.19 95.88 0.0722 0.6684 - 0.4145 
2.21 122.2 0.0640 0.6491 - 0.4419 
2.23 160.5 0.0558 0.6284 - 0.4689 
2.25 220.9 0.0476 0.6062 - 0.4956 

TABLE 1 

481------ 
42 - 

36 - 

30 - 

z 24 - 

18 - 

FIGURE 2 (a). For legend see next page. 

advantage of (2.5) we see that a consistent solution of the governing equations 
may be found by making the assumptions 

a/& N r ,  G N r-l, F N r2, where r = t,-t. 

The consequences of these assumptions are explored on a quantitative basis after 
rewriting the governing equations (2.2) in terms of the functions H(7, r )  and 

K(7, ‘1, where 7 = axr, rG = K(7, r ) ,  ar2F = H(7,  r )  - $7, (2.6) 
43-2 
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FIarmE 2. Variation of (a) Q (2, t )  and (b) F&, t )  with z for values of t  near t ~ .  

01 being a free constant at this point. Equations (2 .2 )  then become 

- rHV7 = 2HH,,, + K2 - H i  + 4 - r2 + u2r3H,,,,,,, 
- 7K7 = 2HK, - 2H7 K + u2r3K,,,,, 

( 2 . 7 ~ )  

(2 .7b )  

with boundary conditions 

H(0 ,  r )  = 0, H,(O, r )  = 8, K(0, r )  = - r ,  ( 2 . 8 ~ )  

H,(oo, r )  = 4, K(co, r )  = 7 ,  (2 .8b)  

and some initial condition a t  t = t ,  which we shall not need. In  parentheses we 
note that other possible algebraic singularities of P(oo, t )  as r+ 0 in which the 
exponent of t , - t  differed from that in (2 .5)  were also examined; our studies 
indicated that it is unlikely that any exponent different from 2 could form the 
basis of an asymptotic expansion of the kind which we develop here. 

Let us now assume that, for 7 < 1, 

H ( r , r )  = Ho(r) -k 7ff1(71) -k ( 2 . 9 ~ )  

K(r , r )  = K&r) -k 7Kl(r]) -k - (2 .9b )  
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On substituting (2 .9 )  into (2 .7)  and equating coefficients of 7 O ,  we obtain 

Ho KA - KO HA = 0, (2.1 Oa) 

2 H o H , " - H i z + K : + t  = 0, ( 2 . 1 0  b )  

the primes denoting differentiation with respect to 7. Since a is a free constant 
we may, without significant loss of generality, deduce from ( 2 . 1 0 ~ )  that 

(2.11) 

The alternative solution is H, = KO, which was excluded by a comparison with 
the numerical results. It is equivalent to replacing 7 by - 7 and H, by - H,. It 
follows from (2.11) and (2.1Ob) that 

H, + KO = 0. 

H," + H, = 4/3, (2.12) 

where /3 is also a constant to be found. The boundary conditions for these 
functions at 7 = 0 are 

Ko(0) = H,(O) = 0, H;(O) = $, (2.13) 

- K O  = H, = $sinr+$/3(l-cos7). (2.14) 

This solution satisfies the boundary conditions (2.13) but cannot satisfy those 
as ?-+a. It must be joined, therefore, to another solution in which the viscous 
forces are significant. Indeed we can think of the viscous forces as acting in the 
neighbourhood of z = 0 when t is small, then as t -+ t, being displaced away from 
this region by the inviscid solution (2.14) but nevertheless continuing to give 
the solution a characteristic diffusive property in the displaced region. Hence 
any match with the viscous region must require 4 and C to  be fmite and there- 
fore occurs in the neighbourhood of 7 = 2nn, where n is aninteger. A n  examination 
of the numerical results indicates that n = 1, but there is no intuitive reason 
why this should be so. Ockendon (1972) and Bodonyi (1975) found in related 
problems that analytically any integer choice of n could lead to a successful 
match. 

Let us now consider the equations for Hl and K ,  obtained by equating the 
coefficients of 7 in the equations resulting from (2 .7 )  when use is made of (2 .9) .  
On writing wl) = - Hl(.r) + Pl(7h (2.15) 

we find that they reduce to 

so 

4H$(P? +Pi) + 4H0 P; + Pi(1- 2Hi)  = 0, 

2H0P; + (1 - 2H;) Pl = Hl. 

(2.16) 

(2.17) 

Two of the complementary functions of (2.16) are simple, while the third has 

(2.18) 

logarithmic singularities at 7 = 0 and 277 and can be excluded. Thus 

PI = A +B(q + 2 4 1 ,  

where A and B are constants, which means that 

Hl = A (1 - 2 H i )  + B[4H, + q( 1 - 2HA)], (2.19 a)  

Kl = 2AHi  + 2B(qH; - Ho). (2.19 b )  
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Kl(0) = - 1, H,(O) = H;(O) = 0 

A z - 1 ,  B = - I p ,  2 

(2 .20 )  

(2 .21)  

Let us now consider the behaviour of the inner solution near 7 = 27r. We set 

(2.22) h 
2 = x - 2nla7, 

express those terms of the series (2 .9)  that have been calculated as functions of 
B and 7, and then expand once more in powers of 7. We obtain 

G = - 1 - p 7 ~ - - ~ d - ~ ~ 7 { ( 1 + p 7 f ) ~ + a 0 1 d ~ } + O ( 7 ) ,  ( 2 . 3 3 ~ )  

F = -7r /a~~+np'b+aapB~+O( l ) .  (2.23 b)  

It is clear that (3 .23)  is incompatible with the boundary conditions (2 .3b)  
as z + a, so there must be another region near q = 2n in which viscous forces are 
significant. Let us adopt f = t and d as the new independent variables and write 

F + n/aT2 = $(a, tA), 6(2, 3). (2.24) 

Then the equations for 3 and 6 are identical with (2 .2 )  on supplying the appro- 
priate carets and the boundary conditions become, when r = 0, 

G + I ,  . @ E + ~  as ~-++oo,  (2.25 a)  

G+Qa&-+-l-Pn, FE-&x,!Id+n/32 as $+-a. (3 .253)  

Conditions (2.25) are, however, insufficient to determine the leading terms in 
the asymptotic expansions of and t? in powers of i- when d is finite; indeed any 
smooth functions of 2 satisfying (2 .25)  may be regarded as candidates for these 
terms. The correct forms depend in some way on the initial conditions when 
f = 0 and on the boundary conditions at the disk, where z = 0. For further 
terms we need more information from the inner solution valid when 7 is finite 
and this presents some difficulty, which we shall discuss below. 

The validity of the structure proposed above can in part be tested by com- 
parison with the numerical solution. First of all we see from (3 .24)  that 3 is 
likely to be a finite fuiiction of tA as 7 -+ 0, so that a($, - t )z Ffoo, t )  -+ - 7f as t +tE. 
The graph of  W,(t) = - 2 F ( a , t )  displayed in figure 1 is consistent with this 
statement. Further, the graphs of Fz and Gin figure 2 show an explosive character 
near t = t E  ( N 2.365) but when scaled in terms of [W,(t)]s remain finite and show 
fairly strong signs of approaching limits as t -+ t ,  as shown in figures 3 (a )  and (b).  
Also, the graphs of these limit curves appear to be quite close to the forms 
predicted by (2 .14)  on choosing the values of a and ,8 appropriately. Again 
according to the asymptotic analysis 

A h 

G,(0,7) = -+ a-ap7+ ..., 
F,,(O, 7) = +ap-a~+  ...; 

(2.26 a)  
(2.26 b )  

from table 1 and additional data not reproduced here it is clear that the numerical 
beheviour of these functions is consistent with their being smooth functions of 
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T near T = 0. Thus on general grounds we have substantial confidence that the 
solution does develop a singularity in the neighbourhood of t = 2.365 and the 
limit structure is then as proposed by the analysis of this section. 

However a cautionary note must now be struck. From each of the comparisons 
mentioned above the values of a and/or /3 can be inferred; however they are not 
quite consistent with each other. It seems that a 21 1.1 and /3 N - 1 are the best 
choices that can be made, but by using (2.5), (3.26), the values of max G(z, t )  
and max Pz(z, t ) ,  the values of z a t  which G = 0 and i$ = 0, and other devices to 
compute OL and /3 we find discrepancies of up to 30 % in these estimates. It may 
be that the difficulties of carrying through the numerical integration for t > 2-2 
preclude the possibility of obtaining a fully consistent comparison, particularly 
for the fine details of the solution. Nevertheless we cannot completely exclude 
the possibility that the asymptotic expansion proposed is deceptively attractive 
and that at some later stage leads to a contradiction which cannot be overcome 
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FIGURE 3. Variation of (a) G/W$(t)  and (b)  B’JW$(t) with 7 = a z ( t ~ - t )  for values of t 
near t ~ .  The crosses on the 7 axis indicate the zeros of (a) Go or ( b )  Ho - &T for /3 = - 0.5, 
- 1.0, and - 1.5. 

and destroys its whole basis. In  this connexion we note that determination of 
the next term, if it is assumed to be O ( T ~ ) ,  in the expansion (2.9) involves the 
solution of the equation 

H;(P; + PL) + 2H0 Pi + ( 1 - H,) P; = I$@), (2.27) 

where F,(q) is a function of 7 defined by the terms of (2.9) already found and 
Pz is defined by an equation analogous to (2.15). The solution of this equation 
can in principle be non-analytic when Ho = 0, i.e. q = 0, 7, or 2n, where 
cot ( 4 ~ ~ )  = -p. A similar situation arises with the equation for PI but in that 
case the singularities may be avoided. Some numerical studies of Pz have been 
made and it appears that the difficulties at 7 = 0 and r0 can be avoided, but 
that Pz is singular at q = 2n for all p. Further, if additional terms of the series 
in (2.9) are calculated parallel difficulties to that with Pz are likely to occur. It 
may be that the expansion forms adopted so far are not general enough to 
provide a complete asymptotic expansion for this flow field. Some support for 
this view is provided by the fact that the singularity in the solution for Pz can 
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be confined to r,~ = 2rr, at the end of its range of validity, and might, therefore, 
be removed or absorbed by some combination of an intermediate layer, where 5 
is large and negative, and an expansion of the solution for P and i? in non- 
integral powers of I-. For such an expansion the properties of the leading terms 
are important and we are able to obtain only numerical approximations to these 
at present. 

In  our opinion, balancing up these arguments, there is a reasonable case for 
believing that the solution of (2 .2 )  does break down at a finite value of t  as the 
numerical integration indicates. Further the inner structure of the solution, i.e. 
for finite values of z, takes on the form (2.9), (2.14) in the limit as T + O  and is 
essentially inviscid in character. The outer solution, in which viscous forces are 
significant, is then displaced towards z = 00. We now consider problem 11, which 
sets the present problem in a physically more realistic context. 

3. Problem 11: the finite disk 
As explained in the introduction we now attempt to place the study of $ 2  

in a more physically satisfying context by supposing that a disk of radius a 
is placed in the plane z* = 0 and two disks each of radius b (9 a)  are placed on 
either side in parallel planes. The disks are surrounded by an infinite volume of 
incompressible viscous fluid and initially are all rotating about a common axis 
through their centres with angular velocity Q, so that a core of rigidly rotating 
fluid envelops the central disk. The angular velocity of this disk is now impulsively 
reversed in sign and we examine the unsteady boundary layer which is thereby 
induced on its upper side, z* > 0. We write r* = ar and t = Qt*, take the velocity 
components of the fluid to be 

(aQu(r, 2, t ) ,  aQv(r,  2, t ) ,  (vQPw(r,  z, t ) } ,  (3 .1)  

and now let R = fia2/v be large. The governing equations of this boundary layer 
reduce to 

l a  aw 
r ar ax 
- - ( r u ) + -  = 0, 

( 3 . 2 ~ )  

(3 .2b)  

(3.26) 

with boundary conditions 

u = O ,  v = - r  , w = 0 at z = 0, r < 1 for t > 0, ( 3 . 3 ~ )  

u = O ,  v = 1  at  z > O ,  r = l  for t > 0 ,  (3 .3b)  

u+O, v+r as z+00 for r 2 0, t > 0, (3.36) 

u=O, v = r  a t  t = O  forall r > O ,  z > O .  ( 3 . 3 4  

Of these conditions ( 3 . 3 ~ ~ )  describes the motion of the central disk x = 0 while 
the others express the fact that the central core of rotating fluid is presumed to 
be unaffected to fist order by the growing boundary layers near z = 0. 
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The initial solution, when 0 < t < 1 and r < I, is the same as for the infinite 
disk discussed in the previous section and the radial velocity aQu is negative. 
Hence at  a given value P < I of r, ulr and vlr are functions of z and t only for 
t < T(r),  where 

(dT/dr)- l  = r max { - Pz(z, t ) }  a t  r = P ,  t = T, (3 .4 )  

where F is defined in § 2 and the maximum is taken over all z > 0. At subsequent 
times u/r and v/r are functions of r as well as of z and t. The general argument 
underlying (3 .4)  has been discussed by Stewartson (1960) and may be stated 
in physical terms as follows. The disturbance to the solution of Q 2 caused by the 
finite size of the disk originates a t  the outer edge at t = 0 + then travels inwards 
at a speed equal to the negative radial component of the fluid velocity and 
simultaneously diffuses instantaneously to all values of z. Hence the disturbance 
front at any time is perpendicular to the disk. Further the global speed of 
propagation of this edge disturbance is equal to --ax (aQu) taken over all z 
at the given time and at the instantaneous position of the disturbance front. 

Once u/r and v/r  become functions of r as well as z and t a number of special 
features arise. In  particular there is a singularity at r = I which needs special 
care. I n  order to examine these features and to facilitate the numerical com- 
putations to be discussed below we define new variables 

y = z / ( i - r )&,  u = !r ( i - r )*U(r ,y , t ) ,  

v = rV(r ,y , t ) ,  w = ( i -r)-*W(r,y , t ) .  
(3 .5)  

Thus the boundary-layer equations become 

au a2u au au 
at ay2 ?Y ar 

(I -r)4- = - - ( W +  &ryU)- - r ( i  - r )  U-- I + P+ (Er- I) U2, 

( 3 . 6 ~ )  

(3 .6b )  
av a v  av av 
at ay2 aY ar ( 1 - r ) f -  = - - (W+$ryU)- -r ( l - r )  U - - 2 ( 1 - r )  U V ,  

aw au au 
aY aY ar 

- + & r y - + r ( i - r ) - + ( 2 - ~ r )  U = 0,  ( 3 . 6 ~ )  

with boundary conditions 

U = 0, V = - 1 ,  W =  0 at y = 0, r < I for t > 0, ( 3 . 7 ~ )  

U = O ,  V = l  a t  y > O ,  r = l  for t > 0 ,  (3 .7b )  

U = O ,  V = l  at t = O  forall r > O ,  y > O .  (3 .7d )  

I n  terms of these variables the governing equations have smooth solutions when 
y is finite, 0 < r < I and t is finite. 

The solution at  r = 1 immediately takes on the steady-state similarity form 
and the appropriate equations obtained by setting r = I in (3 .6)  have been 
solved numerically by Bodonyi & Stewartson (1975).  They discovered that 
there are in fact three possible solutions in one of which V = - I and in another 
of which V + 1 remains very small until y is large. Both of these solutions were 

U-tO,  V - t l  as y-tco for r >  0, t > 0, (3 .7c)  
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V(r ,y , t )  

FIGURE 4 (a). For legend see next page. 

rejected and the third, in which V becomes close to its mainstream value of + 1 
at moderate values of y, was chosen as the initial profile at  r = 1. The resulting 
numerical solution behaved smoothly when 0 < I - r < 1. 

Also, Belcher et al. (1972) have shown that if, as here, the circulation of the 
outer flow is an increasing function of the radius then the radial and tangential 
velocity profiles of the steady boundary layer both oscillate about their inviscid 
values for any r < I with amplitudes that diminish exponentially as the outer 
edge of the boundary layer is approached. Hence in the present problem we can 
expect regions of reversed flow which require some care in the numerical 
computations. 

The numerical method chosen to integrate (3.2) is the same as that developed 
by Belcher (1970) and used (1972) to elucidate the structure of the generalized- 
vortex boundary layer. If qij denotes a velocity component a t  the node point 
(ri, yj) for the current time t and ijij its known value a t  the previous time i = t - At, 
the difference equations are written for the intermediate time i?+&At in the 
manner of Crank & Nicholson (1947), with velocity components being replaced 
by their mean values &(?&+qij), derivatives with respect to y by centred 
differences, and those with respect to r by downwind differences. The radial 
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FIQTJRE 4. Variation of V(T, y, t )  with y = z / (  1 - ~ ) f  at (a) r = 0.80 
and (b)  T = 0.60 for selected values oft. 

derivatives were, however, evaluated a t  the old time t, thereby making the 
scheme partially explicit. Also, in Belcher’s problems it was not possible to 
extend the solution as far as r = 0 in general, but no such difficulty arises here 
and e solution for all r is found for E < 2.28. For the calculations the step lengths 
chosen were Ar = 0.05, Ay = 0.30 and At = 0.02 and 0.04, end the outer edge 
of the boundary layer y -f co was approximated by y = 60. These choices enabled 
us to achieve a reasonable balance between accuracy and computation time. 
Only the results of the computations will be presented here; further details on 
the numerical method are given by Bodonyi (1973). 

As already mentioned, at  r = 1 the solution immediately takes on its steady- 
state behaviour. For r < 1 the solution is dependent on t as well as on r and y. 
Near the outer part of the disk a steady state has virtually been reached by 
t = 2 as shown by the tangential velocity profiles at  r = 0-8 and 0.6 in figures 
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5 

4 ( a )  and (b )  respectively. Over the inner part, however, there is no such clear 
indication and indeed the velocity components are rapidly increasing functions 
of t when r =0-20 and t > 2. We illustrate the situation by displaying the 
variation of W(r,  00, t ) ,  the normal velocity a t  the upper edge of the boundary 
layer, as a function of t for various values of r in figure 5. In figures 6 (a )  and (b) 
respectively, we display V,(r, 0, t )  and U&, 0, t ) ,  the two components of the skin 
friction, as a function of r for various values oft. From figure 5 we see that there 
appears to be a massive eruption of the boundary layer at t E 2.3 and near 
r = 0 whose character is very similar to that described in $2.  Elsewhere the 
boundary layer begins by acting as a centripetal fan but soon changes over to a 
centrifugal form, starting at the outer edge and moving inboard. Presumably the 
changeover occurs because of the necessity to feed the eruption at the centre. 
Figure 6 also gives further evidence that the steady-state behaviour near the 
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FIGURE 6 (a) .  For legend see facing page. 

edge of the disk is reached rather quickly. In  figure 6 (a)  we see that the torque 
remains finite for all ( r ,  t )  and can readily imagine that there is a limiting curve 
of V,  for all r at t = tE. Although the radial skin friction in figure 6 ( b )  is also finite 
it is not so easy to envisage a limiting form for it as t --f tE. 

The differences between the results of the present study at r = 0 and those for 
the finite disk discussed in the previous section can be seen in figures 5 and 6, 
wherein the corresponding infinite-disk solutions are given as circled points. The 
discrepancies between the results for the larger values oft  are attributed to the 
differences in the step sizes Ar, AZ and At used in the numerical computations. A 
further comparison of the results near r = 0 indicates that the finite nature of 
the disk has little effect on the singularity, the two solutions being very nearly the 
same. As mentioned in the introduction this can be understood as follows. The 
disturbance front, behind which the solution depends on the finiteness of the disk, 
moves inboard with a velocity ry(r )  which is the maximum inward radial velocity 
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FIGURE 6. Variation of (a)  tangential wall shear V,(r,O,t) and (b)  radial wall shear 
Uy(r,  0 , t )  with r for selected values oft. 0, results from the infinite-disk solution. 

at the front. Hence it cannot reach the origin in a finite time unless y becomes 
infinite and so the singularity in the infinite-disk problem also occurs in the 
more realistic finite-disk problem at the axis of rotation. 

The authors are grateful to Prof. 0. R. Burggraf, who guided the graduate 
work of one of us (R. J.B.), for many helpful discussions and comments, parti- 
cularly on the numerical procedure. They are also indebted to the computer 
centres of The Ohio State University and Virginia Polytechnic Institute and 
State University for making computer time available during the course of this 
study. 
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